Simplifying the Expression: (x^5 - 4x^3 + 4x^2) / (x - 4)
This expression represents a rational function, where a polynomial (x^5 - 4x^3 + 4x^2) is divided by a linear expression (x - 4). To simplify this expression, we can utilize polynomial long division.
Here's how the process works:
-
Set up the division:
___________ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0
We add placeholder terms (0x and 0) for missing powers of x in the dividend.
-
Divide the leading terms:
- The leading term of the dividend (x^5) is divided by the leading term of the divisor (x), resulting in x^4.
- Write x^4 above the division line.
x^4______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0
-
Multiply the divisor by the quotient:
- Multiply (x - 4) by x^4, which gives x^5 - 4x^4.
- Write this result below the dividend, aligning terms by their powers.
x^4______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4
-
Subtract:
- Subtract the result from the dividend, changing signs of the terms in the bottom line.
x^4______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3
-
Bring down the next term:
- Bring down the next term from the dividend (+4x^2).
x^4______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3 + 4x^2
-
Repeat steps 2-5:
- Divide the new leading term (4x^4) by the divisor's leading term (x), resulting in 4x^3.
- Multiply (x - 4) by 4x^3 and write the result below.
- Subtract the result.
- Bring down the next term (0x).
x^4 + 4x^3______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3 + 4x^2 4x^4 - 16x^3 -------- 12x^3 + 4x^2
-
Continue the process:
- Repeat steps 2-5 until the degree of the remainder is less than the degree of the divisor.
x^4 + 4x^3 + 12x^2______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3 + 4x^2 4x^4 - 16x^3 -------- 12x^3 + 4x^2 + 0x 12x^3 - 48x^2 -------- 52x^2 + 0x
x^4 + 4x^3 + 12x^2 + 52x______ x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3 + 4x^2 4x^4 - 16x^3 -------- 12x^3 + 4x^2 + 0x 12x^3 - 48x^2 -------- 52x^2 + 0x + 0 52x^2 - 208x -------- 208x + 0
x^4 + 4x^3 + 12x^2 + 52x + 208 x-4 | x^5 - 4x^3 + 4x^2 + 0x + 0 x^5 - 4x^4 -------- 4x^4 - 4x^3 + 4x^2 4x^4 - 16x^3 -------- 12x^3 + 4x^2 + 0x 12x^3 - 48x^2 -------- 52x^2 + 0x + 0 52x^2 - 208x -------- 208x + 0 208x - 832 -------- 832
-
Result:
- The quotient is x^4 + 4x^3 + 12x^2 + 52x + 208.
- The remainder is 832.
Therefore, the simplified form of the expression (x^5 - 4x^3 + 4x^2) / (x - 4) is:
x^4 + 4x^3 + 12x^2 + 52x + 208 + 832 / (x - 4)